Gravitational Interactions Optimization
نویسندگان
چکیده
Evolutionary computation is inspired by nature in order to formulate metaheuristics capable to optimize several kinds of problems. A family of algorithms has emerged based on this idea; e.g. genetic algorithms, evolutionary strategies, particle swarm optimization (PSO), ant colony optimization (ACO), etc. In this paper we show a populationbased metaheuristic inspired on the gravitational forces produced by the interaction of the masses of a set of bodies. We explored the physics knowledge in order to find useful analogies to design an optimization metaheuristic. The proposed algorithm is capable to find the optima of unimodal and multimodal functions commonly used to benchmark evolutionary algorithms. We show that the proposed algorithm (Gravitational Interactions Optimization GIO) works and outperforms PSO with niches in both cases. Our algorithm does not depend on a radius parameter and does not need to use niches to solve multimodal problems. We compare GIO with other metaheuristics with respect to the mean number of evaluations needed to find the optima.
منابع مشابه
Comparison of the Accuracy of Black Hole Algorithms and Gravitational Research and the Hybrid Method in Portfolio Optimization
The main purpose of this research is portfolio optimization in Tehran securities exchange using the black hole algorithm and the Gravitational Research algorithm. We also propose an algorithm named Hybrid Algorithm which combines the two algorithms above to cover the weaknesses of these two algorithms. Finally we compare the results with the Markowitz model and choose the optimal algorithm.<br ...
متن کاملParameters Assignment of Electric Train Controller by Using Gravitational Search Optimization Algorithm
The speed profile of the train will be determined according to criteria such as safety, travel convenience, and the type of electric motor used for traction. Due to the passengers and cargo on the train, the electric train load is constantly changing. This will require reassigning the speed controller’s parameters of the electric train. For this purpose, the Gravitational Search optimization Al...
متن کاملOptimization of Mixed-Integer Non-Linear Electricity Generation Expansion Planning Problem Based on Newly Improved Gravitational Search Algorithm
Electricity demand is forecasted to double in 2035, and it is vital to address the economicsof electrical energy generation for planning purposes. This study aims to examine the applicability ofGravitational Search Algorithm (GSA) and the newly improved GSA (IGSA) for optimization of themixed-integer non-linear electricity generation expansion planning (GEP) problem. The performanceindex of GEP...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملFUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...
متن کامل